Interval Markov Decision Processes with Multiple Objectives
نویسندگان
چکیده
منابع مشابه
Markov Decision Processes with Multiple Long-Run Average Objectives
We consider Markov decision processes (MDPs) with multiple long-run average objectives. Such MDPs occur in design problems where one wishes to simultaneously optimize several criteria, for example, latency and power. The possible trade-offs between the different objectives are characterized by the Pareto curve. We show that every Pareto optimal point can be ε-approximated by a memoryless strate...
متن کاملSynchronizing Objectives for Markov Decision Processes
We introduce synchronizing objectives for Markov decision processes (MDP). Intuitively, a synchronizing objective requires that eventually, at every step there is a state which concentrates almost all the probability mass. In particular, it implies that the probabilistic system behaves in the long run like a deterministic system: eventually, the current state of the MDP can be identified with a...
متن کاملInterval Methods for Uncertain Markov Decision Processes
In this paper, the average cases of Markov decision processes with uncertainty is considered. That is, a controlled Markov set-chain model with a finite state and action space is developed by an interval arithmetic analysis, and we will find a Pareto optimal policy which maximizes the average expected rewards over all stationary policies under a new partial order. The Pareto optimal policies is...
متن کاملCompositional Reasoning for Interval Markov Decision Processes
Model checking probabilistic CTL properties of Markov decision processes with convex uncertainties has been recently investigated by Puggelli et al. Such model checking algorithms typically suffer from the state space explosion. In this paper, we address probabilistic bisimulation to reduce the size of such an MDP while preserving the probabilistic CTL properties it satisfies. In particular, we...
متن کاملMultiple-Environment Markov Decision Processes
We introduce Multi-Environment Markov Decision Processes (MEMDPs) which are MDPs with a set of probabilistic transition functions. The goal in a MEMDP is to synthesize a single controller with guaranteed performances against all environments even though the environment is unknown a priori. While MEMDPs can be seen as a special class of partially observable MDPs, we show that several verificatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Modeling and Computer Simulation
سال: 2019
ISSN: 1049-3301,1558-1195
DOI: 10.1145/3309683